学霸就是要肝 第174节
其中的几乎每种方法都远远超出了他们的想像,也远远超过了学术界对这个问题的研究进展。
而那些在现场的物理学家们,更是一阵汗流浃背,好家伙,这几种方法中所使用到的数学都几乎超出了他们的想像,饶是如此,竟然也无法解决?
众人对于质量间隙问题的难度又有了进一步的认识。
那么,萧易到底是如何解决的?
“最终我瞄准了拓扑量子场论这一角度。”
“杨-米尔斯理论具有丰富的拓扑结构,尝试从TQFT进行突破,是一个很好理解的角度。”
“而事实证明,我选择的这个角度也是正确的。”
【对于S^4上的杨-米尔斯场A,其曲率形式F满足:F=dA+A∧A.】
【陈数c定义为:c=1/(8π^2)∫_S4Tr(F∧F)】
萧易转过头,开始在黑板上写了起来,同时说道:“入手之后,我便开始观察杨-米尔斯理论在四维球面上的表现,众所周知,这种四维球面空间在拓扑性质上非常的特殊。”
“四维球面S^4是一个紧致的、无边界的四维流形,它具有著简单连通性的拓扑性质,同时还有著高阶同伦群的零化性质,这都让我们的分析能够变得稍微简单一些。”
“所以我们将自然而然能够想到利用反自对偶场,以及霍奇对偶算子。”
萧易的推导再度开始。
而随著他在黑板上构造出了他口中的反自对偶场后,立马让在场的很多物理学者想起了当初萧易推导出来的X场,就是从这个反自对偶场中导出来的!
意识到了这一点,他们顿时都是眼前一亮,总算是让他们发现了X场最初的起源,而仔细观察一下萧易给出的这些推导过程,也让他们更为清楚了X场的机制。
一时间,他们都越发期待萧易最后的成果,究竟能够为理论物理学的研究提供多少帮助?
毕竟这场报告的摘要中,萧易可是明确说明过,会说明结论在物理上的意义。
就这样,数学家期待著霍奇-顶点代数解析理论,物理学家们期待著最终结论的物理意义,每个人都有光明的未来……
“……最终,我们可以引出一个定理:设G是一个紧的、简单的李群,且A是定义在四维球面S^4上的一个杨-米尔斯场。如果存在一个非零的陈数c,则杨-米尔斯场A的最低能量激发态具有一个严格正的质量间隙。”
“显然这个定理是等价于质量间隙问题的,因此,我们只需要证明它,也就证明了质量间隙的存在。”
场下的听众们,顿时都屏住了呼吸,仔细观察著萧易给出的这个定理。
“原来如此,他竟然将拓扑量子场论推导到了这种地步……”
第一排的座位上,身为这场报告会主要听众之一的爱德华·威滕,膝盖上放著草稿纸,而他正在跟著萧易的讲述,在草稿纸上进行著推演。
最后,他抬起头,看向萧易的目光中更为震撼。
能够导出这个等价的关系,已经是几乎将整个过程中能用到的各种方法,同量子场论结合到了一种新的极致,其中对于技术的考量,远超他的想像。
其中包含了他曾经研究出来的Chern-Simons理论,同时还有四维拓扑不变量、纤维丛理论等等一大堆的复杂数学方法。
能够将这么多的方法掌握就已然相当难得了,就更不用说还要将它们全部融会贯通,并且用在推导质量间隙这种难度的问题上面了。
作为一名顶尖的数学物理大师,威滕这回算是对萧易的数学能力有了更深的认识了。
然而,都已经将方法用到此种地步,最终也只能导出这样一个等价的定理吗?
接下来又该如何证明?
应该就是那个已经传遍了的霍奇-顶点代数解析方法了吧?
威滕的心中,也燃起了对这个方法的期待。
而此刻,导出了这个定理后,台上的萧易转过头,朝现场的所有观众们微微一笑:“等价的关系已经被我们得出,接下来的问题,我们该如何证明这个定理呢?”
随后,PPT也被他翻到了下一页。
而这一页上面的内容,正是那个给萧易带来了灵感的霍奇标准猜想。
“霍奇标准猜想,属于一系列关于代数簇上代数循环的猜想之一,与霍奇猜想有一定的联系,但相对来说要更加具体和技术性。”
“大家现在可以观察一下这个猜想的陈述,思考一下我刚才给出的定理,是否能够找出一些联系?”
萧易说到这里,然后就停了下来,从旁边拿起了自己的水杯喝了一口。
场下的人,百分之九十以上都是一脸懵。
不是吧,你真的让我们观察?
是不是有点太看得起我们了,这玩意儿能观察出什么东西来?
对于绝大多数的人而言,他们连这个猜想的陈述都看不懂。
【对于一个定义在复数域上的非奇异射影代数簇X,考虑X的(p,p)-同调类中的代数循环Z,定义一个由Z诱导的算子L(Z):H^m(X,Q)→H^(m+2p)(X,Q),其中Hm(X,Q)是X上的第m阶同调群。猜想断言,对于适当的p,这个算子L(Z)是正定的。】
“你们看得懂吗?”
台下,叶承等人所在的区域,他们看著萧易给出的这个东西,全部都是一脸懵逼。
“看得懂个鬼啊?”
陈木华深深地打了个哈欠。
此时的他们,基本上都处于昏昏欲睡的状态中了。
仿佛回到了当年那个高二炎热的下午,听著老师在台上讲著椭圆曲线的题目,而自己却已经是哈欠连连,恨不得直接睡过去。
当然,对他们这些数学尖子生来说,当年老师讲的,他们也完全会,但现在面对萧易讲的,他们是真的懂不了一点了。
“别想了,人家萧哥就不是让咱们来观察的,是让坐在前面的那些大牛们观察的。”卢平摆摆手,一脸平静的说道。
对于他们而言,接受现实是最重要的。
然而,话虽如此,其实对于坐在前排的那些大牛们而言,他们左看右看,也完全看不出来个什么啊?
还有,萧易现在突然提出这个问题来,是想干嘛?
莫非是要证明霍奇标准猜想?
开什么玩笑!
证明了质量间隙问题还不够,你还想顺便把证明霍奇标准猜想?
要知道的是,在数学中还有很多猜想的难度都丝毫不亚于千禧年七大难题,而霍奇标准猜想就是其中之一,千禧年难题最重要的不仅仅是难,还在于它们解决了之后能够给学术界带来的价值。
当然,萧易也没有一直等下去,喝了一口水后,他便继续开口道:“观察之后,我们可以很轻易地联系到霍奇理论中的一些工具。”
“首先就是,霍奇分解,然后就是,顶点代数。”
“霍奇分解是霍奇理论的核心概念之一,它将复代数簇上的德拉姆同调分解为(p,q)-型的部分,另一方面,顶点代数作为量子场论和代数几何的重要工具,可以用来描述共形场论中的代数结构。”
“如果两者相结合,能够给我们带来什么呢?”
萧易没有直接给出回答,而是开始在黑板上写了起来。
“考虑一个复代数簇X,其德拉姆同调群HkdR(X,C)可以通过霍奇分解进行表示。”
【HkdR(X,C)=_(p+q=k)H^(p,q)(X)】
“顶点代数是一种代数结构,用于描述二维共形场论中的算子代数,设V为一个顶点代数,其包含的算子满足某些交换关系和局部性条件,特别地,顶点代数具有一个态空间V=_(n∈Z)Vn,其中Vn是能级为n的子空间。”
“现在我们考虑一个顶点代数V作用在霍奇结构的同调类上,具体来说,设V的算子作用在Hp,q(X)上,定义一个映射。”
【φ:VH^(p,q)(X)→H^(p′,q′)(X)】
“其中 p′和 q′由顶点代数的算子特性决定。”
写到这里,萧易转头微微一笑:“通过这种构造,可以将霍奇结构与顶点代数的框架结合起来,如此,即是霍奇-顶点代数构型。”
“但下面又出现了一个问题,我们该如何使用这个构型呢?”
“如果无法使用,它即使结合起来,也终究只能像是空中楼阁一样,没有什么实际意义。”
“所以,这个时候,我们就要运用模空间,同时还要引入霍奇结构类。”
“考虑X的模空间M,其上的点对应于某种几何对象,比如如矢量丛、代数簇等等的等价类,而这时候,我们再使用刚才的霍奇-顶点代数构型,就可以研究模空间上的霍奇结构了!”
【H^k_(global)(M,C)=_(p+q=k)H(p,q)_(global)(M).】
当萧易写到了这里时,观众席中,已然是一片波澜了。
见到萧易给出的这些过程,那些数学家们,心中完全无法平静。
这个就是霍奇-顶点代数解析法?
如此绝妙的推导,还有这个方法的作用……
几乎是将霍奇理论中的数个工具都给完全打通了?
还有现在给出的模空间……
此刻他们的心中只能意识到,代数几何要变天了。
普林斯顿等一众学者们的位置上,德利涅此时整个身子都往前倾斜了不少,仿佛想要将黑板上的推导过程看得更加仔细一些,就差没有直接站起来,走到黑板旁边了。
“这个方法……这个方法……如果当年我能够用它来证明韦伊猜想的话……”德利涅说道:“老师他应该就会满意了吧?”
“你的意思是说,用这个方法也能够用来证明韦伊猜想?”
德利涅的旁边,邦别里顿时吃惊地问道。
“那是当然,而且……”德利涅喃喃道:“能够让我摆脱掉其他附加结构,实现对韦伊猜想的纯粹代数几何证明。”
邦别里倒是明白德利涅这么说的意思。
韦伊猜想作为代数几何中最重要的猜想之一,当年一大堆最顶尖的数学家们都在尝试著解决这个问题。
在那人类群星闪耀的时间,安德烈·韦伊、亚历山大·格罗滕迪克、让-皮埃尔·塞尔、麦可·阿蒂亚等等,当然还有他眼前的这位皮埃尔·德利涅,都为韦伊猜想的证明做出过努力。
上一篇:让你写书,没让你交代犯罪记录!
下一篇:离婚后,被富婆太太表白倒追