我一心科研,你却想骗我谈恋爱? 第135节
凯莎琳说道:“我研究过克拉梅尔定理,可研究一周之后,就放弃了。”
“米尔斯小姐主攻数论领域?”
“叫我‘凯莎琳’。”
凯莎琳轻轻笑著,又说:“我硕士选的是素数理论,现在跟著老师做离散数学方面的内容。”
“很有趣的领域。”许青舟称赞。离散数学方面,就比如图论,集合论、逻辑等等,他的克拉梅尔猜想里,就用到了图论的知识。
“比起听你的夸赞,我更想知道,你在证明克拉梅尔定理的时候,是怎么想到过渡到素数差值间距的函数相邻叠代表达式的。”
凯莎琳满是歉意,说:“抱歉,本来打算等下周二向你提问,但你知道的,这种情况很难压制好奇心。”
“我的荣幸。”
这个问题许青舟预演过好些遍,想都不用想就可以回答:“在这里,需要先给定素数与后继相邻素数之差同该素数取自然对数的平方之比.”
9点整,第一场报告会正式开始。
这个时候,汇报厅内相当热闹,人已经坐满。
一道人影从礼堂外走进来,脚步很快,径直走向讲台,在男人走进来的时候,报告厅响起浓烈的掌声。
是个蓄著胡子,穿著一件老旧夹克的中年。
这人就是本基·达特。
达特教授对著众人鞠了一躬,没有多余的寒暄,随即拿起一旁的粉笔,在黑板上写下一排公式,
L(s,chi)=sum_{n=1}^i=n=1∑∞nsχ(n)=χ(1)+2sχ(2)+3sχ(3)+
“一年前,我和助手正在研究类数公式和伽罗华表示理论,发现狄利克雷L函数并不能满足我们的需求.”
“虽然L函数最初是在σ>1的区域定义的,但通过解析延拓,我们可以将其定义扩展到整个复平面上。当然,除了可能的极点或本质奇点外。”
60分钟报告会飞速过去。
达特教授说完过后,就到了提问环节。
纯粹的数学交流,许青舟坐在最后一排,听得很认真,对L函数有不少新的理解,可惜的是,他并没有用到延拓特性,目前的L函数,已经能够满足自己的研究。
报告会结束,有不少学者都上去和达特教授交流,许青舟则是吐出一口气,和凯莎琳一起走出报告厅。
刚出报告厅,凯莎琳就对许青舟说道:“许,我恐怕得先走一步,本来还想和你继续讨论的。”
“没事,下次有机会。”许青舟点头。
凯莎琳也没耽搁,向著大厅外走去,可刚走两步,她又突然折返回来,停在许青舟面前,打开笔记本,写著什么。
很快,她已经写完,撕下稿纸,递给许青舟,轻轻笑著,“如果你想有个人带你在这里逛逛的话,打电话给我。”
“谢谢。”
许青舟哑然失笑,没想到对方折返回来是因为这个,纸条上面记著凯莎琳的电话和邮箱。
“再见。”
“再见。”
和凯莎琳分开,许青舟在报告大厅逛了一圈,没发现有什么值得讨论和交流的课题,干脆直接回酒店,先去2楼吃了个午饭,再回房间,沉入孪生素数猜想的计算里。
第180章 我可能需要借用一下黑板
中午休息了30分钟,2点的时候,许青舟再度来到报告厅,让他意外的时候,居然又遇到凯莎琳。
这个报告比上午的还火热,他已经提前30分钟,可依旧差点连位置都没抢到。
“人太多了。”许青舟感慨了一句。
凯莎琳就坐在许青舟身旁,微微笑著点头,“这可是梅纳德教授的讲座。”
梅纳德教授,目前在牛津大学任教,是素数这个领域的大佬,这次报告的主题也是关于黎曼猜想的。
“你觉得黎曼猜想是什么?”凯莎琳问道。
许青舟想了想,说道:“黎曼猜想,对于我们来说,可能类似于代数几何没出来时候的费马大定理。”
或者就是石器时期出现的艾菲尔铁塔图纸。
“很准确。”凯莎琳眼前亮了亮,非常认同许青舟这句话。
隔壁,两个人的聊天话题已经从黎曼猜想过渡到孪生素数猜想,其中一个甚至已经摆出几张稿纸,正在上面勾勾画画。
很快,周围已经围了一圈人,这些人当中,自然包括许青舟和凯莎琳。
主要输出结论的是一位印度小哥,他使用的是改良过后的加权筛法,又是和张益唐的方法类似,都是在算数级数的分布上做了调整。
印度小哥用著咖喱味的英语说著:
“这里,我们定义$pi_2(x)$为小于或等于$ x $的孪生素数对的数量。即,如果存在素数$ p $使得$ p $和$ p+2 $都是素数,则孪生素数猜想等价于$lim_{{x o infty}}pi_2(x)=infty $。”
凯莎琳紧紧盯著稿纸,认真地思考。
周围的人也陷入沉思,在想如果按照印度小哥的思路,接下来可以怎么推算。
和黎曼猜想相比,孪生素数猜想似乎没有那么可望不可及。
和大家不一样,许青舟有些失望,这个方法太烂,这样下去别说比肩张益唐的素数方法,根本就是死路一条好吧。
“相信我,只要再推算下去,有80%的可能性可以证明孪生素数猜想!”
望著对方信誓旦旦的样子,许青舟忍不住说道:“现在,剩下的m,对S- S/2- S/2- S而言,必满足r-2≤Ω(m)≤r,但显然,继续计算下去,会出现一个和这个条件相斥的结果。”
印度小哥摇头:“不,绝对不会出现这种情况,我们率先已经求出了S的下界.”
“但你m已经被(i)在S中计算到两次,你这个求出的下界是不准确的。”许青舟笑著。
印度小哥沉默了一下,但还是坚持自己的观点,“不,我认为我们的计算并没有问题,只要延展下去,肯定会有结果。”
他似乎为了验证自己的结论,补充道:“我的老师亚吉尔教授也很认可这种方法。”
亚吉尔教授在数论圈小有名气,听到这个名字,周围质疑的目光顿时少了。
但来这里的人都有些东西,倒没有多激动,打算稳一手。
毕竟,著名学者宣布自己证明了某个猜想,结果第二天就被人推翻的事情很常见。
不过,也会有人感兴趣,比如一个青年掏出了自己的名片:“这位先生,我来自拉夫堡大学,有没有兴趣一起研究这个课题。”
“非常欢迎。”印度小哥笑著,期间还挑衅地看了看许青舟。
许青舟耸耸肩,回到自己的位置,没有继续无意义的争论,心说要是这么这么简单,早在过年的时候他就已经搞定了。
凯莎琳问许青舟:“你觉得他能成功吗?”
“不能。”这次轮到许青舟笃定了。
凯莎琳轻笑起来:“我也觉得不能。”
这个时候,报告厅的座位已经坐满,连过道里都站著人。
没办法,梅纳德教授算是这个世界最顶尖的一批数学家,报告会的内容又是目前热度很高的黎曼猜想。
很快,一个穿著西装的中年走进报告厅。
梅纳德教授同样直奔主题,这个时候,大屏幕里放著早就准备好的内容。
报告内容:狄利克雷多项式新大值估计。
台下,许青舟打开笔记本,开始认真听讲。
“在这段时间,我们首次尝试对ingham在1940年左右关于黎曼zeta函数零点的经典界限进行实质性的改进”
“当然,这里不得不提张益唐先生的孪生素数结论,通过对此结论的补充和改进,我们发现可以对狄利克雷多项式新大值进行重新的计算。”
论证依旧是基于傅立叶分析。
在许青舟看来,前几个步骤都可以算是标准步骤,并不难,而从参会其他人的表情上来看,应该和他有一样的想法。
报告会30分钟的时候,终于出现了转变,或者说巧妙的选择。
比如把一个关键的相位矩阵提升到了6次方,可以更好的描述和分析函数在不同尺度下的行为。
到这里的时候,坐在前面的大佬们也已经翻开笔记本,根据梅纳德教授的思路开始推算。
解决数学难题,可能就当于修桥,左边修点右边点,但中间就缺一段。
梅纳德教授的这个成果,相当于又给这座桥延长了一截,尽管没完全修好,但已经能让两边经济啊交通啊文化啊之类的产生一定的交流。
意义重大。
1个小时过去。
提问环节都过去了大半。
梅纳德教授视线在报告厅看了一圈,说道:“很抱歉,由于时间限制,下面我只能回答最后一个人的提问了。”
有人举手。
想提问的不少,大致有四五个,其中就包括一直沉思的许青舟和那位印度小哥。
梅纳德教授的目光落到许青舟身上,和其他人相比,这个提问者太年轻了。
以至于,作为一个研究素数的人,他第一时间就想到那位才证明克拉梅尔定理的年轻人。
梅纳德教授望著许青舟,说道:“这位先生,您可以发言了。”
上一篇:四合院:我被罢免后,全院失业
下一篇:返回列表